jueves, 9 de febrero de 2012

Fluidos Newtonianos y No Newtonianos

Fluidos Newtonianos y No Newtonianos


Se denomina fluido a un tipo de medio continuo formado por alguna sustancia entre cuyas moléculas hay una fuerza de atracción débil. Los fluidos se caracterizan por cambiar de forma sin que existan fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable).
En el cambio de forma de un fluido la posición que toman sus moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen. Los líquidos toman la forma del recipiente que los aloja, manteniendo su propio volumen, mientras que los gases carecen tanto de volumen como de forma propios. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven con libertad en los gases. Los fluidos están conformados por los líquidos y los gases, siendo los segundos mucho menos viscosos (casi fluidos ideales).

Fluido Newtoniano

Un fluido newtoniano es un fluido cuya viscosidad puede considerarse constante en el tiempo. La curva que muestra la relación entre el esfuerzo o cizalla contra su tasa de deformación es lineal y pasa por el origen, es decir, el punto [0,0]. El mejor ejemplo de este tipo de fluidos es el agua en contraposición al pegamento, la miel o los geles que son ejemplos de fluido no newtoniano.

Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo condiciones normales de presión y temperatura: el aire, el agua, la gasolina, el vino y algunos aceites minerales.




Gel                           Miel




A medida que aumenta la temperatura de un fluido líquido, disminuye su viscosidad. Esto quiere decir que la viscosidad es inversamente proporcional al aumento de la temperatura.



Fluido No Newtoniano

Un fluido no newtoniano es aquel cuya viscosidad varía con la temperatura y la tensión cortante que se le aplica. Como resultado, un fluido no-newtoniano no tiene un valor de viscosidad definido y constante, a diferencia de un fluido newtoniano.
Aunque el concepto de viscosidad se usa habitualmente para caracterizar un material, puede resultar inadecuado para describir el comportamiento mecánico de algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se pueden caracterizar mejor mediante otras propiedades reológicas, propiedades que tienen que ver con la relación entre el esfuerzo y los tensores de tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo cortante oscilatorio.
Un ejemplo barato y no tóxico de fluido no newtoniano puede hacerse fácilmente añadiendo almidón de maíz en una taza de agua. Se añade el almidón en pequeñas proporciones y se revuelve lentamente. Cuando la suspensión se acerca a la concentración crítica es cuando las propiedades de este fluido no newtoniano se hacen evidentes. La aplicación de una fuerza con la cucharilla hace que el fluido se comporte de forma más parecida a un sólido que a un líquido. Si se deja en reposo recupera su comportamiento como líquido. Se investiga con este tipo de fluidos para la fabricación de chalecos antibalas, debido a su capacidad para absorber la energía del impacto de un proyectil a alta velocidad, pero permaneciendo flexibles si el impacto se produce a baja velocidad.

Cómo elaborar fluido no Newtoniano


Bola de boliche en Fluido No Newtoniano



Pisar fluido No Newtoniano





Dentro de los principales tipos de fluidos no newtonianos se incluyen los siguientes:
Tipo de fluidoComportamientoCaracterísticasEjemplos
PlásticosPlástico perfectoLa aplicación de una deformación no conlleva un esfuerzo de resistencia en sentido contrarioMetales dúctiles una vez superado el límite elástico
Plástico de BinghamRelación lineal, o no lineal en algunos casos, entre el esfuerzo cortante y el gradiente de deformación una vez se ha superado un determinado valor del esfuerzo cortanteBarro, algunos coloides
SeudoplásticoFluidos que se comportan como seudoplásticos a partir de un determinado valor del esfuerzo cortante
DilatanteFluidos que se comportan como dilatantes a partir de un determinado valor del esfuerzo cortante
Fluidos que siguen la ley de potenciasSeudoplásticoLa viscosidad aparente se reduce con el gradiente del esfuerzo cortanteAlgunos coloides, arcilla, leche,gelatina, sangre.
DilatanteLa viscodidad aparente se incrementa con el gradiente del esfuerzo cortanteSoluciones concentradas de azúcar en agua, suspensiones de almidón de maíz o de arroz.
Fluidos viscoelásticosMaterial de MaxwellCombinación lineal en serie de efectos elásticos y viscososMetales, materiales compuestos
Fluido Oldroyd-BCombinación lineal de comportamiento como fludio newtoniano y como material de MaxwelBetún, masa panadera, nailon,plastilina
Material de KelvinCombinación lineal en paralelo de efectos elásticos y viscosos
PlásticoEstos materiales siempre vuelven a un estado de reposo predefinido
Fluidos cuya viscosidad depende del tiempoReopécticoLa viscosidad aparente se incrementa con la duración del esfuerzo aplicadoAlgunos lubricantes
TixotrópicoLa viscosidad aparente decrece con la duración de esfuezo aplicadoAlgunas variedades de mieles,kétchup, algunas pinturas antigoteo.

Bosón de Higgs

Bosón de Higgs-La Partícula de Dios

El bosón de Higgs es una hipotética partícula elemental masiva cuya existencia es predicha por el modelo estándar de la física de partículas. Desempeña un papel importante en la explicación del origen de la masa de otras partículas elementales, en particular la diferencia entre el fotón (sin masa) y los bosones W y Z (relativamente pesados). Las partículas elementales con masa y la diferencia entre la interacción electromagnética (causada por los fotones) y la fuerza débil (causada por los bosones W y Z) son críticas en muchos aspectos de la estructura microscópica y macroscópica de la materia. Con esto, si la partícula existe, el bosón de Higgs tendría un enorme efecto en la física y el mundo de hoy. Hay que mencionar que los bosones de Higgs se denominan a veces las 'partículas de Dios' o 'partículas divinas', a raíz del título de un libro de divulgación científica escrito por Leon Lederman, laureado con el Nobel de Física en 1988.

*Debate sobre la Partícula de Dios y la nueva forma de energía que trae consigo.

Bosones W y Z; Teoría sobre el Bosón de Higgs.

Los bosones W y Z son las partículas mediadoras de la interacción nuclear débil, una de las cuatro interacciones fundamentales de la naturaleza. Son tres tipos de partículas fundamentales muy masivas que se encargan en general de cambiar el sabor de otras partículas, los leptones y los quarks.

Leptón: Es una partícula con espín -1/2 que no experimenta interacción fuerte (esto es, la fuerza nuclear fuerte). Los leptones forman parte de una familia de partículas elementales conocida como la familia de los fermiones, al igual que los quarks.

Quark: En física de partículas, los quarks, o cuarks , junto con los leptones, son los constituyentes fundamentales de la materia. Varias especies de quarks se combinan de manera específica para formar partículas tales como protones y neutrones.


La partícula llamada bosón de Higgs es un cuanto de uno de los componentes del campo de Higgs. En un espacio vacío, el campo de Higgs adquiere un valor esperado de vacío (VEV) diferente de cero que permanece constante en el tiempo y en todo lugar del universo. El VEV de un campo de Higgs es constante e igual a 246 GeV. La existencia de un VEV no nulo tiene una importancia fundamental: da una masa a cada partícula elemental, incluido el mismo bosón de Higgs. En particular, la adquisición espontánea de un VEV diferente de cero rompe lasimetría gaugiana electrodébil, un fenómeno conocido como el mecanismo de Higgs. Este es el simple mecanismo capaz de dar masa a un bosón de gauge que es también compatible con la teoría de campo de gauge.

En el modelo estándar, un campo de Higgs consiste en dos campos neutrales y dos cargados. Los dos componentes cargados y uno del neutro son bosones de Goldstone, que no tienen masa y se convierten, respectivamente, en los componentes longitudinales de tercera polarización de los bosones W y Z (masivos). Lo cuántico de los restantes componentes neutrales corresponde a los bosones masivos de Higgs. Un campo de Higgs es un campo escalar, el bosón de Higgs tiene un espín cero y no tiene momento angular intrínseco. El bosón de Higgs es también su propia antipartícula y tiene simetría CPT.

El modelo estándar no predice el valor de la masa del bosón de Higgs. Si la masa de este bosón es entre 115 y 180 GeV, entonces el modelo estándar puede ser válido a todas las escalas energéticas hasta la escala de Planck (1016 TeV). Muchas teorías están a la expectativa de una nueva física más allá del modelo estándar que podría surgir a escalas de TeV, basadas en las carencias del modelo estándar. La escala más alta posible de masa permitida en el bosón de Higgs (o en alguna ruptura espontánea de simetría electrodébil) es de un TeV; tras ese punto el modelo estándar se vuelve inconsistente sin un mecanismo de ese tipo porque la unicidad es violada en ciertos procesos de dispersión. Muchos modelos de super simetría predicen que el bosón de Higgs tendrá una masa sólo ligeramente por encima de los actuales límites experimentales, a unos 120 GeV o menos.


Hasta la fecha el bosón de Higgs no ha sido observado experimentalmente a pesar de los esfuerzos de los grandes laboratorios de investigación como el CERN o el Fermilab. Mas alla de eso los datos obtenidos permiten estimar un valor mínimo experimental de masa 114.4 GeV para el bosón de Higgs del modelo estándar, con un nivel de confianza del 95%. Experimentalmente se ha registrado un pequeño número de eventos no concluyentes en el colisionador LEP en el CERN. Estos han podido ser interpretados como resultados de los bosones de Higgs, pero la evidencia no es concluyente. Se espera que el Gran Colisionador de Hadrones, ya construido en el CERN, pueda confirmar o desmentir la existencia de este bosón. El LHC (Large Hadron Collider), con un anillo de 27 Km. de circunferencia, fue encendido el 10 de septiembre de 2008, como estaba previsto, pero un fallo en el sistema de enfriamiento que debe mantener los imanes a una temperatura aproximada de -271,3 °C detuvo el experimento. El 20 de noviembre del 2009 volvió a ser encendido operando en el rango de 450 GeV a 2.23 TeV. De nuevo fue apagado, en este caso para realizar ajustes y el 30 de marzo de 2010 volvió a ser puesto en marcha esta vez a potencia de 7 TeV. Eso sí, no será hasta 2016 cuando funcione a pleno rendimiento.

Gran Colisionador de Hadrones (LHC)

El Gran Colisionador de Hadrones, GCH (en inglés Large Hadron Collider,LHC) es un acelerador y colisionador de partículas ubicado en la Organización Europea para la Investigación Nuclear (CERN, sigla que corresponde a su antiguo nombre en francés: Conseil Européen pour la Recherche Nucléaire), cerca de Ginebra, en la frontera franco-suiza. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeV de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.

El LHC es el acelerador de partículas más grande y energético del mundo. Usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés) y más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.

Una vez enfriado hasta su temperatura de funcionamiento, que es de 1,9 K (menos de 2 grados por encima del cero absoluto o −271,15 °C), los primeros haces de partículas fueron inyectados el 1 de agosto de 2008, y el primer intento para hacerlos circular por toda la trayectoria del colisionador se produjo el 10 de septiembre del año 2008. Aunque las primeras colisiones a alta energía en principio estuvieron previstas para el 21 de octubre de 2008, el experimento fue postergado debido a una avería que produjo la fuga del helio líquido que enfría uno de los imanes superconductores.



Verificar la existencia del bosón de Higgs sería un paso significativo en la búsqueda de una teoría de la gran unificación, que pretende relacionar tres de las cuatro fuerzas fundamentales conocidas, quedando fuera de ella únicamente la gravedad. Además este bosón podría explicar por qué la gravedad es tan débil comparada con las otras tres fuerzas. Junto al Bosón de Higgs también podrían producirse otras nuevas partículas cuya existencia se ha predicho teóricamente, y para las que se ha planificado su búsqueda, como los strangelets, los micro-agujeros negros, el monopolo magnético o las partículas super-simétricas