jueves, 9 de febrero de 2012

Bosón de Higgs

Bosón de Higgs-La Partícula de Dios

El bosón de Higgs es una hipotética partícula elemental masiva cuya existencia es predicha por el modelo estándar de la física de partículas. Desempeña un papel importante en la explicación del origen de la masa de otras partículas elementales, en particular la diferencia entre el fotón (sin masa) y los bosones W y Z (relativamente pesados). Las partículas elementales con masa y la diferencia entre la interacción electromagnética (causada por los fotones) y la fuerza débil (causada por los bosones W y Z) son críticas en muchos aspectos de la estructura microscópica y macroscópica de la materia. Con esto, si la partícula existe, el bosón de Higgs tendría un enorme efecto en la física y el mundo de hoy. Hay que mencionar que los bosones de Higgs se denominan a veces las 'partículas de Dios' o 'partículas divinas', a raíz del título de un libro de divulgación científica escrito por Leon Lederman, laureado con el Nobel de Física en 1988.

*Debate sobre la Partícula de Dios y la nueva forma de energía que trae consigo.

Bosones W y Z; Teoría sobre el Bosón de Higgs.

Los bosones W y Z son las partículas mediadoras de la interacción nuclear débil, una de las cuatro interacciones fundamentales de la naturaleza. Son tres tipos de partículas fundamentales muy masivas que se encargan en general de cambiar el sabor de otras partículas, los leptones y los quarks.

Leptón: Es una partícula con espín -1/2 que no experimenta interacción fuerte (esto es, la fuerza nuclear fuerte). Los leptones forman parte de una familia de partículas elementales conocida como la familia de los fermiones, al igual que los quarks.

Quark: En física de partículas, los quarks, o cuarks , junto con los leptones, son los constituyentes fundamentales de la materia. Varias especies de quarks se combinan de manera específica para formar partículas tales como protones y neutrones.


La partícula llamada bosón de Higgs es un cuanto de uno de los componentes del campo de Higgs. En un espacio vacío, el campo de Higgs adquiere un valor esperado de vacío (VEV) diferente de cero que permanece constante en el tiempo y en todo lugar del universo. El VEV de un campo de Higgs es constante e igual a 246 GeV. La existencia de un VEV no nulo tiene una importancia fundamental: da una masa a cada partícula elemental, incluido el mismo bosón de Higgs. En particular, la adquisición espontánea de un VEV diferente de cero rompe lasimetría gaugiana electrodébil, un fenómeno conocido como el mecanismo de Higgs. Este es el simple mecanismo capaz de dar masa a un bosón de gauge que es también compatible con la teoría de campo de gauge.

En el modelo estándar, un campo de Higgs consiste en dos campos neutrales y dos cargados. Los dos componentes cargados y uno del neutro son bosones de Goldstone, que no tienen masa y se convierten, respectivamente, en los componentes longitudinales de tercera polarización de los bosones W y Z (masivos). Lo cuántico de los restantes componentes neutrales corresponde a los bosones masivos de Higgs. Un campo de Higgs es un campo escalar, el bosón de Higgs tiene un espín cero y no tiene momento angular intrínseco. El bosón de Higgs es también su propia antipartícula y tiene simetría CPT.

El modelo estándar no predice el valor de la masa del bosón de Higgs. Si la masa de este bosón es entre 115 y 180 GeV, entonces el modelo estándar puede ser válido a todas las escalas energéticas hasta la escala de Planck (1016 TeV). Muchas teorías están a la expectativa de una nueva física más allá del modelo estándar que podría surgir a escalas de TeV, basadas en las carencias del modelo estándar. La escala más alta posible de masa permitida en el bosón de Higgs (o en alguna ruptura espontánea de simetría electrodébil) es de un TeV; tras ese punto el modelo estándar se vuelve inconsistente sin un mecanismo de ese tipo porque la unicidad es violada en ciertos procesos de dispersión. Muchos modelos de super simetría predicen que el bosón de Higgs tendrá una masa sólo ligeramente por encima de los actuales límites experimentales, a unos 120 GeV o menos.


Hasta la fecha el bosón de Higgs no ha sido observado experimentalmente a pesar de los esfuerzos de los grandes laboratorios de investigación como el CERN o el Fermilab. Mas alla de eso los datos obtenidos permiten estimar un valor mínimo experimental de masa 114.4 GeV para el bosón de Higgs del modelo estándar, con un nivel de confianza del 95%. Experimentalmente se ha registrado un pequeño número de eventos no concluyentes en el colisionador LEP en el CERN. Estos han podido ser interpretados como resultados de los bosones de Higgs, pero la evidencia no es concluyente. Se espera que el Gran Colisionador de Hadrones, ya construido en el CERN, pueda confirmar o desmentir la existencia de este bosón. El LHC (Large Hadron Collider), con un anillo de 27 Km. de circunferencia, fue encendido el 10 de septiembre de 2008, como estaba previsto, pero un fallo en el sistema de enfriamiento que debe mantener los imanes a una temperatura aproximada de -271,3 °C detuvo el experimento. El 20 de noviembre del 2009 volvió a ser encendido operando en el rango de 450 GeV a 2.23 TeV. De nuevo fue apagado, en este caso para realizar ajustes y el 30 de marzo de 2010 volvió a ser puesto en marcha esta vez a potencia de 7 TeV. Eso sí, no será hasta 2016 cuando funcione a pleno rendimiento.

Gran Colisionador de Hadrones (LHC)

El Gran Colisionador de Hadrones, GCH (en inglés Large Hadron Collider,LHC) es un acelerador y colisionador de partículas ubicado en la Organización Europea para la Investigación Nuclear (CERN, sigla que corresponde a su antiguo nombre en francés: Conseil Européen pour la Recherche Nucléaire), cerca de Ginebra, en la frontera franco-suiza. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeV de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.

El LHC es el acelerador de partículas más grande y energético del mundo. Usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés) y más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.

Una vez enfriado hasta su temperatura de funcionamiento, que es de 1,9 K (menos de 2 grados por encima del cero absoluto o −271,15 °C), los primeros haces de partículas fueron inyectados el 1 de agosto de 2008, y el primer intento para hacerlos circular por toda la trayectoria del colisionador se produjo el 10 de septiembre del año 2008. Aunque las primeras colisiones a alta energía en principio estuvieron previstas para el 21 de octubre de 2008, el experimento fue postergado debido a una avería que produjo la fuga del helio líquido que enfría uno de los imanes superconductores.



Verificar la existencia del bosón de Higgs sería un paso significativo en la búsqueda de una teoría de la gran unificación, que pretende relacionar tres de las cuatro fuerzas fundamentales conocidas, quedando fuera de ella únicamente la gravedad. Además este bosón podría explicar por qué la gravedad es tan débil comparada con las otras tres fuerzas. Junto al Bosón de Higgs también podrían producirse otras nuevas partículas cuya existencia se ha predicho teóricamente, y para las que se ha planificado su búsqueda, como los strangelets, los micro-agujeros negros, el monopolo magnético o las partículas super-simétricas

1 comentario: